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Abstract— A scalp-recording electroencephalography (EEG)-
based brain-computer interface (BCI) system can greatly im-
prove the quality of life for people who suffer from motor disabil-
ities. Deep neural networks consisting of multiple convolutional,
LSTM and fully-connected layers are created to decode EEG
signals to maximize the human intention recognition accuracy.
However, prior FPGA, ASIC, ReRAM and photonic accelerators
cannot maintain sufficient battery lifetime when processing real-
time intention recognition. In this paper, we propose an ultra-low-
power photonic accelerator, MindReading, for human intention
recognition by only low bit-width addition and shift operations.
Compared to prior neural network accelerators, to maintain
the real-time processing throughput, MindReading reduces the
power consumption by 62.7% and improves the throughput per
Watt by 168%.

I. INTRODUCTION

Brain-computer interface (BCI) [1] enables the direct com-

munications and control using brain intentions alone, and thus

offers a practical way to help people suffering from motor

disabilities. Particularly, scalp-recording electroencephalogra-

phy (EEG) [2], [3] is one of the most promising solutions to

implementing BCIs, due to its low-cost and portable acqui-

sition system. When a person is intent on moving different

parts of his body, the EEG signals from his scalp fluctuates

in different modes. In this way, human intentions can be

recognized by decoding EEG signals. EEG-based BCI has

been widely adopted in controlling wheelchairs, prosthetics

and exoskeletons [4].

However, recognizing human intentions by decoding EEG

signals is challenging. EEG-based BCI systems suffer from

inevitable noises [3], due to human physiological activities,

e.g., eye blinks and heart beats. Moreover, the correlations [3]

between EEG signals and their corresponding brain intentions

are not straightforward. To denoise EEG signals and detect

human intentions, prior works [5], [6] create neural networks

consisting of multiple LSTM and convolutional layers that

obtain high recognition accuracy (e.g., 98.3% [5]). Because

of the 128Hz raw EEG signal sampling rate [5], to recognize

intentions in real time, a BCI system processes the inference

of a typical EEG neural network [5] under the throughput of

128 times per second. For 64-channel EEG signals, the BCI

system has to support a ∼100M-FLOPS throughput, which

is difficult to be delivered by mobile CPUs and GPUs [7]

under the tight power constraint and the temperature budget

of a 2◦C increase [8] for most bio-embedding applications.
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The essential computing effect of the EEG-based intention

recognition makes mobile CPUs and GPUs [7] hardly meet

the real-time processing requirement under the power and

temperature constraints.

Although FPGA [6], ASIC [7], ReRAM [9], and even

photonic [10] neural network accelerators are proposed to

process neural network inferences in an energy-efficient way,

it is still difficult for the BCI system to adopt these solutions,

because of its tight power budget and real-time requirement.

The CMOS-based FPGA [6] and ASIC [7] designs cannot

maintain reasonable battery lifetime when processing neural

network inferences. For instance, the battery of Google Glass

using an ASIC accelerator stands for only 45 minutes [11]

when tracking consecutive object actions. The power-hungry

CMOS analog-to-digital converters dominate > 80% of the

total power consumption of the ReRAM-based accelerator [9]

and hence becomes the obstacle to this accelerator’s fast adop-

tion in the wearable BCI systems. Inspired by the low power

photonic network-on-chip [12], a recent work [10] creates

a photonic accelerator to significantly improve the inference

throughput per Watt of convolutional neutral networks by

compact optical micro-disks. But the eDRAM and optical

adders in the photonic accelerator consume 79.1% of its total

power and prevents it from achieving higher power efficiency.

To process the real-time EEG-based human intention recog-

nition more efficiently under tight power and temperature con-

straints, in this paper, we propose an ultra-low-power photonic

accelerator, MindReading, for the wearable BCI system. Our

contributions can be summarized as follows.

• We present universal logarithmic quantization to quantize

not only weights but also activations of convolutional,

LSTM and fully-connected layers into the data represen-

tation of power-of-2 with trivial accuracy degradation. In

this way, expensive floating point matrix-vector multipli-

cations can be replaced by low bit-width addition and

shift operations.

• We build a novel photonic human intention accelerator,

MindReading, to process the neural network composed

of power-of-2 quantized weights and activations by on-

chip photonic low-bit adders and shifters. Particularly,

we create a photonic activation unit to directly quantize

the outputs of various activations, i.e., Tanh, ReLU and

Sigmoid, to power-of-2 representations.

• We evaluated and compared MindReading against the

state-of-the-art CPU, GPU, FPGA, ASIC, ReRAM, pho-

tonic neural network accelerators. Our experimental re-

sults show that to maintain the real-time processing

throughput, MindReading reduces the power consump-

tion by 63% and improves the throughput per Watt by
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Fig. 1. The EEG-based Human Intention Recognition.

170% over a recent photonic accelerator.

II. BACKGROUND

A. Electroencephalography Signal Recognition

The recognition flow of EEG signals is shown in Figure 1.

The EEG-based BCI system uses a wearable headset with 64

electrodes to capture EEG signals [5]. The raw data from

64 electrodes at time-step t is a 1D data vector with the

size of 64. For instance, when t is 0, the 1D raw data is

[S[0][1], S[0][2], . . . , S[0][64]]. To model the position information

of electrodes, the 1D raw data vector is converted to a 2D

10 × 11 data matrix according to the 64-electrode placement

map shown in Figure 1. And then, human intentions can

be recognized by decoding EEG signals with high accuracy

(98.3%) using EEG-NET [5] composed of convolutional,

fully-connected, LSTM and softmax layers. To recognize

human intentions in real-time, EEG-NET has to process 128

2D data matrices per second, since the EEG sampling rate

of the BCI system is 128Hz [5]. To reliably adopt a battery-

powered real-time BCI system [1], [2], [3] in real-world ap-

plications, a low-power human intention recognition hardware

accelerator becomes a must.

for(pos=0; pos<OUTR*OUTC; pos++)
 for(outn=0; outn<OU; outn++){
  for(inn=0; inn<IN; inn++)
   for(i=0; i<K*K; i++)
    Op+=Wi*Ii;
 }

//2. power-of-2 convolution on Weights 
using 16-bit accumulation and storage
Op+=bitshift(Ii,logQ(Wi));

//3. power-of-2 convolution on both Activation and Weights using 4-bit 
accumulation and data storage (LogP2QNN)
Op+=bitshift(1, logQ(Ii)+logQ(Wi));

Let   Wi   = weight[outn][inn][i]   
         Ii   =  input[inn][SW*row+i]          
         Op   = output[outn][pos]    

//1. normal convolution

Fig. 2. A P2QNN or LogP2QNN quantized convectional layer.

B. Convolutional Layer

As Figure 2 shows, a convolutional layer takes IN × INC ×
INR as input where IN, INC and INR indicate the input channel

number, input width and height, respectively. A IN × K × K
weight filter convolves with the input by moving SW strides

until generating OU × OUTC × OUTR output elements where

K is the filter size; OU, OUTC, and OUTR denote the output

channel number, width and height, respectively.

C. Long Short-Term Memory Layer

Figure 1(b) shows the basic structure of a Long Short-Term

Memory (LSTM) cell, where Ht is the output of the time-step

t, Xt means the input of the time-step t; and Ct indicates the

cell memory storage. The cell’s state and its output are updated

by four gates, i.e., It, Ft, Jt and Ot. The activation functions

(σ), (
∫

) are Sigmoid and Tanh, respectively. And
⊗

,
⊙

and
⊕

indicate dot-product, element-wise multiplication and

element-wise addition, respectively.

D. Logarithmic Quantization

To reduce the computing overhead, Power-of-2 Quantized

Neural Network (P2QNN) [10], [13] is proposed to quantize

weights of convolutional layers to their power-of-2 represen-

tations. In this way, expensive multiplications can be replaced

by cheap binary shift and linear accumulation operations. As

Figure 2 shows, P2QNN linearly accumulates 16-bit fixed

point inputs to compute a convolutional layer. To further

reduce the accumulation overhead, the logarithmically accu-

mulated P2QNN (LogP2QNN) [13] is presented by quantizing

inputs, weights and even the activations of convolutional layers

to their power-of-2 data representations. In Figure 2, the

logarithmic accumulations can be done by lower bit-width

(e.g., 4-bit) adders, indicating lower power consumption.

Compared to the full-precision model, LogP2QNN decreases

the inference accuracy by ∼ 1% [13]. However, applying

LogP2QNN on LSTM layers is not trivial, since compared to

convolutional layers relying only on ReLU , they have more

types of activation function including Sigmoid and Tanh. In

this paper, we propose an universal logarithmic quantization

to quantize activations of LSTM layers with little accuracy

degradation.
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Fig. 3. Micro-disk-based (a) 1-bit EO full adder (b) 4-bit crossbar shifter.

E. Photonic P2QNN Accelerator

A recent work [10] proposes a photonic accelerator, Holy-
Light-A, to process P2QNN quantized inferences by micro-

disk-based adders and shifters. It achieves the state-of-the-art

inference throughput per Watt, since micro-disks have ultra-

low power consumption, and high switching frequency.

HolyLight-A adopts a 16-bit ripple-carry adder consisting

of 16 1-bit full adders, each of which can be viewed in

Figure 3(a). To perform a N -bit addition of A + B, the

carry (Ci) and sum (Si) bit calculation are summarized as
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(b) The performance comparison.

Fig. 4. The power bottleneck of HolyLight-A when accelerating EEG-NET
to recognize human intentions in real-time.

Ci = (Ai ⊕ Bi) · Ci−1 + Ai · Bi = Pi · Ci−1 + Gi and

Si = Ci−1 ⊕ (Ai ⊕ Bi) = Ci−1 ⊕ Pi, respectively, where

i means the ith bit. Because the critical path of an N -bit

carry-ripple adder is determined by the sequential carry bit

calculation, so only the carry bit calculation is implemented

by photonic micro-disks, while the other parts, i.e., Pi&Gi,

are caculated by CMOS transistors [14] (∼ 10ps). Two carrier

waves (CWs) are injected to a full adder. Only a CW carries

the signal Ci−1. Both CWs are divided into half by splitters.

The electrically computed signals Gi and Pi are applied on

micro-disks to modulate the passing lights. By tuning the

phase and intensity [14], one optical combiner is served as

an XOR gate to produce the sum bit, while the other is used

as an OR gate to generate the carry bit. The 16-bit adder

performance is mainly decided by the modulation speed of

micro-disks on the critical path. When micro-disks run at

5GHz, a 16-bit adder can be reliably operated at 4.3GHz.

For shift operations, HolyLight-A uses a crossbar composed

of 16 × 16 micro-disk-based crossing switching elements

(CSEs). Figure 3(b) shows a 4-bit crossbar doing a 1-bit

logical right shift operation. By configuring the ON or OFF

state of the micro-disk, the passing light can turn its direction

by 90 degrees. A 4-bit crossbar can implement any i-bit

right/left binary shift operation by configuring the micro-disk

states in the crossbar. If no light is detected by a photodetecter

(PD), the output (e.g., a1) is 0. The frequency of a 16-bit

shifter is decided by the micro-disk switching speed (4.3GHz).

III. MOTIVATION

To achieve the real-time processing throughput, a human

intention recognition accelerator needs to perform 128 EEG-

NET inferences per second (IPS), since the EEG sampling

rate of the BCI system is 128Hz [5]. We customize the

original HolyLight-A to a low-power real-time configuration

shown in Table I by reducing the unnecessary computing

components and lowering the operating frequency. More de-

tails can be seen in Section IV-IV-B3. As Figure 4(b) shows,

the customized HolyLight-A can achieve exactly 128 IPS

when processing P2QNN quantized EEG-NET. However, the

power consumption of the customized HolyLight-A is still

significant for a battery-powered real-time BCI system, due

to its power hungry eDRAM buffer, bus, and 16-bit photonic

adder. As Figure 4(a) shows, in the customized HolyLight-A,

the eDRAM, bus and adder consume 71.7%, 12.1% and 7%

of its power consumption, respectively. The adder is used for

16-bit accumulations, while the bus and eDRAM are used to

transfer and store 16-bit accumulated intermediate results.

To further reduce the power consumption but maintain the

same real-time processing throughput, from the algorithm
perspective, we propose universal logarithmic quantization

to quantize both activations and weights for convolutional,

LSTM, and fully connected layers in EEG-NET, so that

we can replace the 16-bit accumulations by cheaper 4-bit

accumulations with little accuracy degradation. From the

hardware perspective, we present a photonic accelerator to

process the neural network composed of power-of-2 quantized

weights and activations by on-chip photonic low-bit adders

and shifters.

4-bit
log2I

 

 4-bit Log2W

4-bit
output

 (∑4bit, max, bitshift)

Previous 
Quant.

✔ ReLU

Our 
Quant.

✔ ReLU
Tanh

Sigmoid

✔

✔

Fig. 5. Universal Logarithmic Quantization for EEG-NET.

IV. MINDREADING

A. Universal Logarithmic Quantization

Since the quantization of LogP2QNN [13] is intended for

CNNs that only have ReLU activations, we cannot simply

apply it on EEG-NET that includes other types of activations,

e.g., Tanh and Sigmoid. As Figure 5 shows, we propose

an universal logarithmic quantization (ULQ) method to quan-

tize Sigmoid, Tanh and ReLU activations to the power-

of-2 representations. The ULQ adopts the same method as

LogP2QNN [13] to quantize weights.

TanhLogQuant(I,N) = sign(I)× 2I (1)

I =

{
0 if I = 0,

Clip(Round(Log2|I|, α−N,α) if I �= 0.
(2)

Clip(a,min,max) =

⎧⎪⎨
⎪⎩
a if a ∈ [min, max],

min if a < min,

max if a > max.

(3)

As Equation 1 and 2 show, we present the ULQ function

TanhLogQuant(I,N, is Tanh) to quantize a Tanh activa-

tion to an N -bit power-of-2 representation. Particularly, in

Equation 2, the function of Clip(a,min,max) (explained

by Equation 3) clips the input a to the range [min, max].

The function of Rounds(a) bounds the input a to the closest

integer. The range of Tanh values is (−1, 1), so the min and

max values in the clip() function are −N and 0, respectively.

The constant α controls the offset range of ULQ and its default

value is 0. Through changing α, we can fine-tune the range of

the quantized Tanh activation value to obtain higher inference

accuracy during training.

Similarly, to quantize a Sigmoid activation, we can use the

ULQ described in Equation 4 and 5. The Sigmoid activations

fall in the range of (0, 1). The min and max values in

the clip() function for Sigmoid activations are β − N and

β, respectively. β decides the range of quantized Sigmoid
activations. We set the default β value as 1.

SigmoidLogQuant(I,N) = 2I (4)

I = Clip(Round(Log2|I|), β −N, β) (5)

To quantize a non-negative ReLU activation, we can adopt

the ULQ in Equation 6. Since the range of ReLU(x) is in

[0, x) and the distribution of ReLU is different from those of

Sigmoid and Tanh, its I can be computed by Equation 7.

The default θ value is 0.

ReLULogQuant(I,N) = 2I (6)

I = Clip(Round(Log2|I|), θ, θ +N) (7)

466

7B-1

Authorized licensed use limited to: Indiana University. Downloaded on July 03,2020 at 14:32:44 UTC from IEEE Xplore.  Restrictions apply. 



���

���

������������������	��
�����	���������

�� ��

BD�EGHJV
B�BY
BZJ�\

B����
^_EEB`

BDjkH�jq

�^�9�\�G��jy9
	�k�yy_9Y�jG9


�^jG
JqqB`�


�^jG
JqqB`

�q�9��\jEGB`

B����9E�`9	YZ9��9�`JyGj��9zJ`G

�����

B��z_G
�_EEB`
�

���^jG9
D\jEGB`


�^jG9
JqqB`�

���	
�	���	��

B�_Gz_G
�_EEB`

���	

9��GBkB`9zJ`G

��

��������������
 ‘1’

����������������������‘�’

��
��

��
���
��
��
��

��
���
��
��
�

 ‘1’

9‘�’

9‘�’

9‘�’

���

��

���

��


���

��

	�k�

�y�9	�k9

B�|jz��

B��_�q��

�_�


�




�
���

Fig. 6. The architecture and pipeline of MindReading.

In short, our proposed ULQ can quantize Tanh, ReLU and

Sigmoid activations to power-of-2 representations with neg-

ligible accuracy loss. Specifically, 4-bit ULQ-quantized EEG-

NET has 97.6% accuracy, degrading the inference accuracy

by only 0.7% over the full-precision EEG-NET.

B. MindReading Photonic Accelerator

1) Architecture: The overall architecture of MindReading

is shown in Figure 6. The chip node relies on an eDRAM

buffer to store EEG signals and intermediate results generated

by Photonic Processing Unit (LogAccu unit). The LogAccu

unit is responsible to calculate binary logarithms and loga-

rithmic accumulations of ULQ-quantized EEG-NET mainly

by using photonic adders and shifters. The chip node adopts

electrical nonlinear units for EEG-NET activations including

ReLU , Tanh and Sigmoid.

2) MindReading LogAccu Unit: As Figure 6(b) shows,

the MindReading LogAccu unit is in charge of process-

ing the convolutional, LSTM and fully-connected layers of

ULQ-quantized EEG-NET. The weights are quantized during

training and can be fetched to eDRAMs. The EEG input

signals and activations are quantized at run-time by ULQ.

During EEG-NET inferences, inputs/activations and quantized

weights are read from the input buffer and allocated to the

LogAccu unit. The inputs/activations are ULQ-quantized by

a photonic Log2 unit. And then, two 4-bit photonic adders

and a Bshifter in the LogAccu unit collaboratively compute

the accumulations in logarithmic domain. The intermediate

results of the LogAccu unit are cached in an output buffer for

the next-layer processing.

LogAccu unit Components. We implement each compo-

nent of the MindReading LogAccu unit as follows:

• Photonic Log2 unit. We build a photonic Log2 unit

shown in Figure 6(c) to accelerate binary logarithm

computations. Log2(m) = Log2(2
−k × 2k ×m) =

−k + Log2(2
k ×m), where m is inputs/activations and

weights, and mapped into (1, 2] by multiplying 2k using

a photonic shifter, so that −k, Log2(2
k ×m) are the

integer part and fraction part of Log2(m). The integer

part, −k, is determined by checking the result after each

1-bit shift until m is mapped into (1, 2]. Since outputs

of each layer are normalized into the range of (-1,1) by

the non-linear activation functions, e.g. Sigmoid, Tanh,

the integer part −k can be determined in one cycle. The

fraction part is returned by searching a tiny look-up table

(∼ 8KB) in eDRAM storing the log2 values between

(1, 2]. Finally, two parts are summed to obtain Log2(m)
using a 4-bit photonic adder.

• eRound and eClip. We use CMOS eRound and eClip
units to facilitate a photonic Log2 unit to construct the

ULQ-quantization LogQ unit, where the Log2 computa-

tion is the most time-consuming step.

• Photonic 4-bit Adder: We adopt the same photonic

ripple carry adder design from HolyLight-A [10].

• Photonic 4-bit Bshifter. To compute bitshift(1, B), we

propose a low-cost photonic 4-bit Bshifter shown in Fig-

ure 6(d) by micro-disk-based parallel switching elements

(PSEs). As Figure 23 shows, LogP2QNN only requires

the values of bitshift(1, B) during convolutions. Hence

a general photonic 4-bit shifter is not considered for

saving the power and energy. In addition, both PSEs and

CSEs can change the direction of waves, but PSEs have a

more compact size and less insertion loss. Our ULQ also

shares the same principle to process convolutional, LSTM

and fully-connected layers. By configuring the MDs into

ON or OFF states, Bshifter can shift the input 1 by B
bits. Figure 6(d) shows an example of Bitshift(1, 2),
where the second MD, MD2, is set to ON state.

LogAccu Pipeline. To implement ULQ quantization, shift

and accumulation operations, LogAccu unit requires 9 cycles

to derive Op from weight Wi and input/activation Ii. As

Figure 6(b) describes, 1 Wi and Ii are fetched from eDRAM

buffer using one cycle. 2 5 cycles are required to calculate

LogQ(Ii) and LogQ(Wi). These 5 cycles are for integer part

computation, fraction part computation, sum between those

tow parts in Log2 unit, eClip() and eRound(), respectively. 3

In the 7th cycle, the sum LogQ(Ii)+LogQ(Wi) is calculated.

4 Bshifter outputs bitshift(1, LogQ(Ii) + LogQ(Wi)) in

the 8th cycle, meanwhile, the last time-step of Op is loaded

from eDRAM buffer. 5 4-bit adder2 sums the last time-step

Op and bitshift(1, LogQ(Ii) + LogQ(Wi)) in the 9th cycle.

The accumulation using 9 cycles will be constantly performed

until one entire convolutional result, Op , is generated. After

that, the generated Op will be be activated using activation

functions, e.g. ReLU and Tanh, for the next-layer processing.

The loop of accumulation in log-domain and activation won’t

stop until the entire EEG-NET inference is finished.

3) Low Power Real-time Hardware Customization: The

design goal of the human intention recognition accelerator

is to minimize the power consumption while maintaining a

128 IPS throughput. To use HolyLight-A to process EEG-

NET, we scaled its frequency down and adjusted the number
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of its hardware resources, e.g., photonic adders and shifters.

We found that one 16-bit adder and one shifter operating

at 4.3GHz are enough to make HolyLight-A to achieve the

real-time processing throughput of EEG-NET. We call it the

customized HolyLight-A. We construct the baseline of Min-

dReading (MindReading-B) by one 4-bit adder and a shifter

operating at 4.3GHz. As Figure 4(b) shows, unfortunately,

MindReading-B obtains only 43 IPS, indicating it cannot meet

the real-time requirement. To enable MindReading to achieve

128 IPS, we add another two 4-bit adders in MindReading-B.

TABLE I
THE POWER AND AREA COMPARISON BETWEEN MINDREADING AND

HOLYLIGHT-A.

Name Component Spec Power (mW ) Area (mm2)

16-bit adder ×1, 4.3GHz 4.24 0.00788
16-bit shifter ×1, 4.3GHz 3.51 0.02796

eDRAM 256KB 41.4 0.16600
4.3GHz bus 384-wire 7 0.00900

HolyLight-A eActivation ×4 1.04 0.00120
eClip ×1 0.26 0.00030

eRound ×1 0.26 0.00030
Total 57.71 0.21264

Bshifter ×1, 4.3GHz 0.87 0.00024
16-bit shifter ×1, 4.3GHz 3.51 0.02796
4-bit adder ×3, 4.3GHz 2.93 0.00591

eDRAM 64KB 10.4 0.04150
4.3GHz bus 128-wire 2.33 0.00300

MindReading eActivation ×4 1.04 0.00120
eClip ×1 0.26 0.00030

eRound ×1 0.26 0.00030
Total 21.55 0.08041

4) Design overhead: The comparison of power and area

between of customized HolyLight-A and MindReading are

summarized as Table I. HolyLight-A and MindReading share

the same electrical activation devices, but they have differ-

ent sizes of eDRAM buffer. This is because both weights

and activations of MindReading are only 4-bit. eActivation

represents eReLU , eSigmoid, eSoftmax, or eTanh. All

electrical logic units are modeled and estimated through

Cadence Virtuoso with 32nm PTM technology. CACTI is

used to model eDRAM, input and output buffers. Similar

to HolyLight-A, MindReading uses one photonic I/O [10] to

communicate with CPUs. We used Lumerical FDTD [15] to

simulate photonic micro-disk-based computing components.

To build MindReading, we modeled and adopted optical split-

ters & combiners, photodetectors and micro-disks from [10].

To estimate the MindReading area, we used a systematic

analysis tool, CLAP [16], that provides detailed structures of

various optical devices.

V. EXPERIMENT METHODOLOGY

Workload. MindReading recognizes human intentions by

accelerating EEG-NET [5] with ultra-low power. We trained

EEG-NET with PhysioNet EEG Dataset [17] using PyTorch-

v0.4. EEG-NET consists of 3 convolutional, 2 fully-connected,

2 LSTM with 30 time-steps and 1 softmax layers. More EEG-

NET details can be viewed in Table II. Compared to the full-

precision EEG-NET with accuracy 98.3%, the ULQ-quantized

EEG-NET degrades only 0.7% inference accuracy.

Accelerators. We compared MindReading against 7 coun-

terparts shown in Table III. We selected an ARM Cortex-

A15 CPU, an Nvidia Tegra-4 GPU, a Zynq-7030 FPGA [6],

a ShiDianNao ASIC [18], a ReRAM-based CNN accelerator

ISAAC [9], a ASIC binary CNN accelerator MXBCNN [19],

TABLE II
THE EEG-NET ARCHITECTURE(CONV: CONVOLUTIONAL; FC:

FULLY-CONNECTED;)

Layer Output Size Ksize stride Output Channels

Conv1 10×11 3×3 1 32

Conv2 10×11 3×3 1 64

Conv3 10×11 3×3 1 128

FC1 1×1 / / 1024

LSTM1 1×1 / / 64

LSTM2 1×1 / / 64

FC2 1×1 / / 1024

Softmax 1×1 / / 6

and a photonic CNN accelerator HolyLight-A [10]. ShiDian-

Nao reduces DRAM accesses for weights to speedup deep

neural networks. ISAAC relies on ReRAM-based dot-product

engines to accelerate matrix-vector multiplications. MXBCNN

using XNOR and Popcount engines to accelerate binarized

CNN. HolyLight-A depends on photonic adders and shifts to

perform P2QNN inferences. The inference accuracy compari-

son of all accelerators is also shown in Table III. CPU, GPU,

FPGA, ShiDianNao and ISAAC implement 16-bit fixed-point

EEG-NET with 98.3% accuracy. MXBCNN degrades 2.2%

accuracy due to its 4-bit binarized weights and activations.

HolyLight-A achieves 97.6% accuracy using 16-bit P2QNN.

Although ULQ further quantizes all activations, MindReading

still obtains 97.6% accuracy by 4-bit ULQ.

Customized accelerator configurations. Since the EEG

sampling rate of the BCI system is 128Hz, we customized a

real-time configuration that can achieve 128 IPS for each ac-

celerator. Except HolyLight-A and MindReading, we assume

the frequency and the number of hardware resources in the

other accelerators can be ideally and linearly scaled, so that

all accelerators can achieve exactly 128 IPS, e.g., 37.2× 6W

Nvidia Tegra-4 GPU has a 128-IPS throughput. The linear

scaling actually overestimates the throughput per Watt of these

accelerators, since in most cases their peripheral circuits, e.g.,

I/O and buses, are not modular or scalable.

TABLE III
SIMULATED SCHEME COMPARISON.

Name Description Accuracy (%)

CPU ARM Cortex-A15 98.3
GPU Nvidia Tegra 4 98.3

FPGA [6] Zynq-7030 98.3
ShiDianNao [7] ASIC 98.3

ISAAC [9] ReRAM PIM 98.3
MXBCNN [19] Binary CNN 96.1

HolyLight-A [10] Photonic P2QNN 97.9
MindReading Photonic ULQ 97.6

Accelerator modeling. A heavily modified deep learning

accelerator simulator FODLAM [20] is used to study the

accelerator performance and power. FODLAM has been cor-

related and validated by physical accelerator chips such as

ShiDianNao. Based on a user-defined accelerator configuration

and EEG-NET, it can generate the performance, power and

energy details of each accelerator. We implement the micro-

architectural pipeline of MindReading in FODLAM.

VI. EVALUATION

Power. The comparison of power consumption of various

accelerators is shown in Figure 7. The ASIC-based ShiDian-

Nao has less power consumption than CPU, GPU and FPGAs

when processing 128 EEG-NET inferences per second since

it is highly specialized for network inferences. The emerging
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ReRAM-based accelerator ISAAC reduces the power con-

sumption by 59% over ShiDianNao, because its ReRAM-

based dot-product engines are more efficient. MXBCNN

consumes less power than ISAAC when achieving 128-IPS,

but has lower inference accuracy, due to its 4-bit binarized

weights and activations. HolyLight-A significantly decreases

the power consumption by 97% over MXBCNN, since its

photonic devices are highly power-efficent. However, it still

requires 57.71 mW in which 79.1% is consumed by a 16-

bit adder and 256KB eDRAM. On the contrary, MindReading

requires only a 4-bit adder and 64KB eDRAM. So it reduces

the power consumption by 62.7% over HolyLight-A.
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Fig. 7. Power consumption comparison.

Performance per Watt. The performance per Watt com-

parison of various accelerators is exhibited in Figure 8. All

non-photonic accelerators suffer from low performance per

Watt. FPGA, CPU and GPU achieve only < 5 IPS per Watt,

while ShiDianNao, MXBCNN and ISAAC has < 70 FPS

per Watt. In contrast, the photonic accelerators, HolyLight-

A and MindReading, boost the performance per Watt above

1000 IPS per Watt. Compared to HolyLight-A, MindReading

improves the performance per Watt by 1.68×, because it has

less eDRAMs and lower bit-width photonic adder.
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Fig. 8. Frames Per Second Per Watt comparison

.

VII. CONCLUSION

In this paper, we present an ultra-low-power photonic accel-

erator, MindReading, to accelerate real-time human intention

recognition. Compared to prior works, MindReading reduces

the power consumption by 62.7%, improves the throughput

per Watt by 168%, and meets the same real-time processing

requirement.
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